Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Infect Dis Model ; 6: 1110-1134, 2021.
Article in English | MEDLINE | ID: covidwho-1401496

ABSTRACT

Multiple effective vaccines are currently being deployed to combat the COVID-19 pandemic, and are viewed as the major factor in marked reductions of disease burden in regions with moderate to high vaccination coverage. The effectiveness of COVID-19 vaccination programs is, however, significantly threatened by the emergence of new SARS-COV-2 variants that, in addition to being more transmissible than the wild-type (original) strain, may at least partially evade existing vaccines. A two-strain (one wild-type, one variant) and two-group (vaccinated or otherwise) mechanistic mathematical model is designed and used to assess the impact of the vaccine-induced cross-protective efficacy on the spread the COVID-19 pandemic in the United States. Rigorous analysis of the model shows that, in the absence of any co-circulating SARS-CoV-2 variant, the vaccine-derived herd immunity threshold needed to eliminate the wild-type strain can be achieved if 59% of the US population is fully-vaccinated with either the Pfizer or Moderna vaccine. This threshold increases to 76% if the wild-type strain is co-circulating with the Alpha variant (a SARS-CoV-2 variant that is 56% more transmissible than the wild-type strain). If the wild-type strain is co-circulating with the Delta variant (which is estimated to be 100% more transmissible than the wild-type strain), up to 82% of the US population needs to be vaccinated with either of the aforementioned vaccines to achieve the vaccine-derived herd immunity. Global sensitivity analysis of the model reveal the following four parameters as the most influential in driving the value of the reproduction number of the variant strain (hence, COVID-19 dynamics) in the US: (a) the infectiousness of the co-circulating SARS-CoV-2 variant, (b) the proportion of individuals fully vaccinated (using Pfizer or Moderna vaccine) against the wild-type strain, (c) the cross-protective efficacy the vaccines offer against the variant strain and (d) the modification parameter accounting for the reduced infectiousness of fully-vaccinated individuals experiencing breakthrough infection. Specifically, numerical simulations of the model show that future waves or surges of the COVID-19 pandemic can be prevented in the US if the two vaccines offer moderate level of cross-protection against the variant (at least 67%). This study further suggests that a new SARS-CoV-2 variant can cause a significant disease surge in the US if (i) the vaccine coverage against the wild-type strain is low (roughly <66%) (ii) the variant is much more transmissible (e.g., 100% more transmissible), than the wild-type strain, or (iii) the level of cross-protection offered by the vaccine is relatively low (e.g., less than 50%). A new SARS-CoV-2 variant will not cause such surge in the US if it is only moderately more transmissible (e.g., the Alpha variant, which is 56% more transmissible) than the wild-type strain, at least 66% of the population of the US is fully vaccinated, and the three vaccines being deployed in the US (Pfizer, Moderna, and Johnson & Johnson) offer a moderate level of cross-protection against the variant.

2.
Math Biosci ; 325: 108364, 2020 07.
Article in English | MEDLINE | ID: covidwho-167907

ABSTRACT

A pandemic of a novel Coronavirus emerged in December of 2019 (COVID-19), causing devastating public health impact across the world. In the absence of a safe and effective vaccine or antivirals, strategies for controlling and mitigating the burden of the pandemic are focused on non-pharmaceutical interventions, such as social-distancing, contact-tracing, quarantine, isolation, and the use of face-masks in public. We develop a new mathematical model for assessing the population-level impact of the aforementioned control and mitigation strategies. Rigorous analysis of the model shows that the disease-free equilibrium is locally-asymptotically stable if a certain epidemiological threshold, known as the reproduction number (denoted by ℛc), is less than unity. Simulations of the model, using data relevant to COVID-19 transmission dynamics in the US state of New York and the entire US, show that the pandemic burden will peak in mid and late April, respectively. The worst-case scenario projections for cumulative mortality (based on the baseline levels of anti-COVID non-pharmaceutical interventions considered in the study) decrease dramatically by 80% and 64%, respectively, if the strict social-distancing measures implemented are maintained until the end of May or June, 2020. The duration and timing of the relaxation or termination of the strict social-distancing measures are crucially-important in determining the future trajectory of the COVID-19 pandemic. This study shows that early termination of the strict social-distancing measures could trigger a devastating second wave with burden similar to those projected before the onset of the strict social-distancing measures were implemented. The use of efficacious face-masks (such as surgical masks, with estimated efficacy ≥ 70%) in public could lead to the elimination of the pandemic if at least 70% of the residents of New York state use such masks in public consistently (nationwide, a compliance of at least 80% will be required using such masks). The use of low efficacy masks, such as cloth masks (of estimated efficacy less than 30%), could also lead to significant reduction of COVID-19 burden (albeit, they are not able to lead to elimination). Combining low efficacy masks with improved levels of the other anti-COVID-19 intervention strategies can lead to the elimination of the pandemic. This study emphasizes the important role social-distancing plays in curtailing the burden of COVID-19. Increases in the adherence level of social-distancing protocols result in dramatic reduction of the burden of the pandemic, and the timely implementation of social-distancing measures in numerous states of the US may have averted a catastrophic outcome with respect to the burden of COVID-19. Using face-masks in public (including the low efficacy cloth masks) is very useful in minimizing community transmission and burden of COVID-19, provided their coverage level is high. The masks coverage needed to eliminate COVID-19 decreases if the masks-based intervention is combined with the strict social-distancing strategy.


Subject(s)
Communicable Disease Control/statistics & numerical data , Coronavirus Infections/prevention & control , Masks/statistics & numerical data , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Social Isolation , COVID-19 , Communicable Disease Control/methods , Contact Tracing/statistics & numerical data , Humans , Quarantine/statistics & numerical data
3.
Infect Dis Model ; 5: 293-308, 2020.
Article in English | MEDLINE | ID: covidwho-142603

ABSTRACT

Face mask use by the general public for limiting the spread of the COVID-19 pandemic is controversial, though increasingly recommended, and the potential of this intervention is not well understood. We develop a compartmental model for assessing the community-wide impact of mask use by the general, asymptomatic public, a portion of which may be asymptomatically infectious. Model simulations, using data relevant to COVID-19 dynamics in the US states of New York and Washington, suggest that broad adoption of even relatively ineffective face masks may meaningfully reduce community transmission of COVID-19 and decrease peak hospitalizations and deaths. Moreover, mask use decreases the effective transmission rate in nearly linear proportion to the product of mask effectiveness (as a fraction of potentially infectious contacts blocked) and coverage rate (as a fraction of the general population), while the impact on epidemiologic outcomes (death, hospitalizations) is highly nonlinear, indicating masks could synergize with other non-pharmaceutical measures. Notably, masks are found to be useful with respect to both preventing illness in healthy persons and preventing asymptomatic transmission. Hypothetical mask adoption scenarios, for Washington and New York state, suggest that immediate near universal (80%) adoption of moderately (50%) effective masks could prevent on the order of 17-45% of projected deaths over two months in New York, while decreasing the peak daily death rate by 34-58%, absent other changes in epidemic dynamics. Even very weak masks (20% effective) can still be useful if the underlying transmission rate is relatively low or decreasing: In Washington, where baseline transmission is much less intense, 80% adoption of such masks could reduce mortality by 24-65% (and peak deaths 15-69%), compared to 2-9% mortality reduction in New York (peak death reduction 9-18%). Our results suggest use of face masks by the general public is potentially of high value in curtailing community transmission and the burden of the pandemic. The community-wide benefits are likely to be greatest when face masks are used in conjunction with other non-pharmaceutical practices (such as social-distancing), and when adoption is nearly universal (nation-wide) and compliance is high.

SELECTION OF CITATIONS
SEARCH DETAIL